Welcome to Tesla Motors Club
Discuss Tesla's Model S, Model 3, Model X, Model Y, Cybertruck, Roadster and More.
Register

Risk of aluminum battery to tesla model

This site may earn commission on affiliate links.
Small correction, I believe 25kg is the weight of the aluminum plates only, not the whole pack.

Ah, found another article that put battery weight for the long-range extender at 100kg. Don't know whether that's dry or wet. i3 REx increases weight by 120kg. Don't know how much is saved from removing hardware the BEV has for the heat pump and structural support.

That's for a "long-range" battery (demo was a bit questionable, so real world range is unknown).. I wonder if there's scalability, and how easy it is to remove and install a new one. (And since it uses water what about low temperature operation?) The low power density would be a stumbling block on reducing the size.

Also a question: how scalable and distributable is reprocessing?

I see an obvious niche in "emergency range" or "range rental" for low to mid range BEVs. I hope Phinergy builds around that model.
 
What I don't like about these types of companies is that they like to specify things by "miles" which is about as vague as you can get. If they just straight told us the kWh of the pack, that would make for very easy comparison.

Well, does the Model S really have a 60kWh/85kWh pack, given that you can't actually _use_ that amount? It would be nice if companies would give the usable kWh and the total kWh.
 
Any news here? Any consequence to Tesla or the Gigafactory ?

Ultra-fast charging aluminum battery offers safe alternative to conventional batteries

Stanford scientists have invented a flexible, high-performance aluminum battery that charges in about 1 minute. Credit: Mark Shwartz, Precourt Institute for Energy, Stanford University
Stanford University scientists have invented the first high-performance aluminum battery that's fast-charging, long-lasting and inexpensive. Researchers say the new technology offers a safe alternative to many commercial batteries in wide use today.
"We have developed a rechargeable aluminum battery that may replace existing storage devices, such as alkaline batteries, which are bad for the environment, and lithium-ion batteries, which occasionally burst into flames," said Hongjie Dai, a professor of chemistry at Stanford. "Our new battery won't catch fire, even if you drill through it."
Dai and his colleagues describe their novel aluminum-ion battery in "An ultrafast rechargeable aluminum-ion battery," in the April 6 advance online edition of the journal Nature.
Aluminum has long been an attractive material for batteries, mainly because of its low cost, low flammability and high-charge storage capacity. For decades, researchers have tried unsuccessfully to develop a commercially viable aluminum-ion battery. A key challenge has been finding materials capable of producing sufficient voltage after repeated cycles of charging and discharging.

Graphite cathode

An aluminum-ion battery consists of two electrodes: a negatively charged anode made of aluminum and a positively charged cathode.
"People have tried different kinds of materials for the cathode," Dai said. "We accidentally discovered that a simple solution is to use graphite, which is basically carbon. In our study, we identified a few types of graphite material that give us very good performance."
For the experimental battery, the Stanford team placed the aluminum anode and graphite cathode, along with an ionic liquid electrolyte, inside a flexible polymer- coated pouch.
"The electrolyte is basically a salt that's liquid at room temperature, so it's very safe," said Stanford graduate student Ming Gong, co-lead author of the Nature study.
Aluminum batteries are safer than conventional lithium-ion batteries used in millions of laptops and cell phones today, Dai added.
"Lithium-ion batteries can be a fire hazard," he said.
As an example, he pointed to recent decisions by United and Delta airlines to ban bulk lithium-battery shipments on passenger planes.
"In our study, we have videos showing that you can drill through the aluminum battery pouch, and it will continue working for a while longer without catching fire," Dai said. "But lithium batteries can go off in an unpredictable manner - in the air, the car or in your pocket. Besides safety, we have achieved major breakthroughs in aluminum battery performance."

One example is ultra-fast charging. Smartphone owners know that it can take hours to charge a lithium-ion battery. But the Stanford team reported "unprecedented charging times" of down to one minute with the aluminum prototype.


Durability is another important factor. Aluminum batteries developed at other laboratories usually died after just 100 charge-discharge cycles. But the Stanford battery was able to withstand more than 7,500 cycles without any loss of capacity. "This was the first time an ultra-fast aluminum-ion battery was constructed with stability over thousands of cycles," the authors wrote.
By comparison, a typical lithium-ion battery lasts about 1,000 cycles.
"Another feature of the aluminum battery is flexibility," Gong said. "You can bend it and fold it, so it has the potential for use in flexible electronic devices. Aluminum is also a cheaper metal than lithium."


Applications

In addition to small electronic devices, aluminum batteries could be used to store renewable energy on the electrical grid, Dai said.
"The grid needs a battery with a long cycle life that can rapidly store and release energy," he explained. "Our latest unpublished data suggest that an aluminum battery can be recharged tens of thousands of times. It's hard to imagine building a huge lithium-ion battery for grid storage."
Aluminum-ion technology also offers an environmentally friendly alternative to disposable alkaline batteries, Dai said.
"Millions of consumers use 1.5-volt AA and AAA batteries," he said. "Our rechargeable aluminum battery generates about two volts of electricity. That's higher than anyone has achieved with aluminum."
But more improvements will be needed to match the voltage of lithium-ion batteries, Dai added.
"Our battery produces about half the voltage of a typical lithium battery," he said. "But improving the cathode material could eventually increase the voltage and energy density. Otherwise, our battery has everything else you'd dream that a battery should have: inexpensive electrodes, good safety, high-speed charging, flexibility and long cycle life. I see this as a new battery in its early days. It's quite exciting."
 
I remember reading about this not being a compelling proposition, since you will need to replace the Aluminum plates a few 100's of miles.
This the Aluminum-air battery developed by an Israeli company right? Phinergy...
Anything '-air' just tends to fall apart after a very short number of cycles because of dendritic spines. If you need to go to a service center for every family vacation you might as well rent a car, if not for price then for inconvenience.

What does make sense for Tesla or Nissan is a rent-able/for sale extra battery pack for long vacations. Plug-and-Play kind of thing. Not sure how the engineering of such a thing would work out though.
 
I remember reading about this not being a compelling proposition, since you will need to replace the Aluminum plates a few 100's of miles.
This the Aluminum-air battery developed by an Israeli company right? Phinergy...
Anything '-air' just tends to fall apart after a very short number of cycles because of dendritic spines. If you need to go to a service center for every family vacation you might as well rent a car, if not for price then for inconvenience.

What does make sense for Tesla or Nissan is a rent-able/for sale extra battery pack for long vacations. Plug-and-Play kind of thing. Not sure how the engineering of such a thing would work out though.

The article is talking about an aluminum-ion battery, not an aluminum-air battery. This one would function similarly to the batteries you're familiar with.

However, I don't see it as any threat. I've been reading about similar breakthrough battery advances for well over half a decade, and none of them have come to commercial fruition. Even if the product lives up to all its promises, it takes quite a while for something like a battery to move to commercial scale production. The gigafactory would be fully complete by the time that could be a remote possibility, and I'm sure by that time parts of the factory could be adapted or cars designed to accept the product.
 
Any news here? Any consequence to Tesla or the Gigafactory ?
No. This battery is 40Wh/kg, Tesla/Panasonic 250Wh/kg. Nothing to see here.

I remember reading about this not being a compelling proposition, since you will need to replace the Aluminum plates a few 100's of miles.
This the Aluminum-air battery developed by an Israeli company right? Phinergy...
No, different chemistry. This new one is Aluminum Ion, not aluminum air.