
Tesla Founders Blog

August 18, 2009

The Roadster Foundry Mobile Charger

Filed under: General — mfeberhard @ 5:16 pm

I designed the Roadster Foundry Mobile Charger because I wanted to be able to charge my

Tesla Roadster from whatever electrical outlets I might find during my travels. I designed it to

take a variety of Plug Adapters, and to program my car’s charging current based on the Plug

Adapter I chose.

I couldn’t purchase the EV connector that Tesla uses on its charger, so I disassembled and re-

used the connector that came with my Tesla MC120. Disassembly and reassembly of this

connector is a bit difficult; perhaps I will write about how it’s done sometime if you are

interested. All other parts come from online suppliers like Digikey.

I needed a variety of special tools to design and build the charger. For example, I needed an

oscilloscope to decode the signals generated by my Tesla high-power charger. (I sold my old

‘scope to NuvoMedia, the company Marc and I founded before we founded Tesla Motors.) I

found an excellent, calibrated Tektronix 2465B on eBay for $800. I needed a big drill bit and

matching tap to modify the strain relief mount on the Tesla connector so that I could use thicker

wire. I needed a big crimping tool to crimp the Radsok contacts for the Tesla connector onto

the wires. I needed a specialty “security” screwdriver to unscrew a screw on the Tesla

connector. Each of these tools has a story, fodder for future blogs…

I had the circuit boards printed by Express PCB. The front panels were machined by Front

Panel Express. I fabricated the boxes on my drill press, starting with a standard Carlon

waterproof 4”X4”X4” NEMA electrical enclosures.

My charger works well, and a few friends with Teslas asked if I could build one for them. I did.

A few more people heard about my charger and asked if I could build one for them, and I did.

Pretty soon I had built 14 of them, with orders for another 20 or so. Rather than go into

business making chargers, I have recently given the project to James Morrison’s Electric Vehicle

Components, and he is now building and selling these chargers. Carolyn is very happy about

this.

In this blog, I describe how the Roadster Foundry Mobile Charger works. I include schematics

and firmware listings for your amusement.I apologize in advance for some of the crummy

drawings – they were imported from Microsoft Word, which mangles everything. Also, I see

that the firmware at the end is getting cropped off at the right; I will fix this I think by changing

the formatting of this blog – in the next few days, I hope.

This is actually the second design; the first was based on the Basic Stamp, a simple

microprocessor development system that is programmed in Basic. When I realized that I would

be making more than one of these, I was kind of embarrassed by the Basic Stamp version (plus

the Basic Stamp itself was too expensive at $50 each), so I chucked the design and redesigned

around a $0.85 PIC microprocessor that I programmed in manly assembly language. (I re-used

the Basic Stamp to make a Halloween costume for Carolyn.)

What the Charger Does

The Roadster Foundry Mobile Charger allows you to charge a Tesla Roadster from standard

electrical outlets, including the following:

Type Voltage Rating
Plug

Configuration
Example Receptacle Usage

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 1/31

NEMA

5-20
120V 20A

Standard USA 120V plug.

Note that some circuits are

15-amps, while most are

20-amps.

NEMA

10-30

208V-

240V
30A

This is the most common

plug used for dryers. Since

dryers are often located in

the garage, this one is very

handy.

NEMA

14-30

208V-

240V
30A

This connector is common

on newer dryer

installations.

NEMA

10-50

208V-

240V
50A

This is commonly used for

ovens and ranges, and is

less likely to be found

anyplace useful for

charging.

NEMA

14-50

208V-

240V
50A

This is the most common

connector in RV parks,

and is sometimes referred

to as the RV connector.

To charge, you need to assemble a complete Charger from two components: the 20-foot long

Charge Cable (which plugs into the car’s charge inlet) and the short Plug Adapter that fits the

electrical receptacle that you intend to use for charging – one of the types shown above.

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 2/31

Charge Cable & Some Plug Adapters

When you attach a Plug Adapter to the Charge Cable, the complete charger is automatically

programmed for the charging rate of the electrical outlet type that you plan to use.

Plug Adapter mated to Charge Cable

The charger, in turn, detects the presence of a car at the other end, and if it finds one there,

signals the car to limit its charging rate to 80% of the rating for the type of electrical receptacle

used. (The National Electrical Code allows an EV to use no more than 80% of a circuit’s rated

ampacity.)

The 240-volt Plug Adapters also contain thermal switches that tell the car to stop charging if the

Plug Adapter gets hot. This is because some electrical receptacles, particularly those in outdoor

locations, get worn out and don’t make good electrical connections anymore. A poor electrical

connection can cause the receptacle and the Plug Adapter to overheat, potentially melting the

plastic or even causing a fire.

How it works

The actual charger for the Tesla Roadster – the circuitry that converts whatever AC is supplied

by the electrical outlet to whatever DC voltage that the batteries require – is actually part of the

Roadster itself. The Roadster Foundry Mobile Charger simply connects the electrical outlet to

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 3/31

the Roadster, and signals the Roadster the maximum allowed current for the particular type of

electrical outlet being used.

Note that the Roadster Foundry Mobile Charger and the Roadster itself both don’t care about

voltage – 120 volts or 240 volts are both fine, as are voltages in between, such as 208 volts.

The Tesla charging connector contains 4 contacts. Two are for the charging current, one is

safety (green wire) ground, and the last is called the Control Pilot, which is used to signal

maximum current. This signal works a lot like the Control Pilot in the old “Avcon” J1772

charging standard – so much so that you could make a Plug Adapter that goes from an Avcon

charger to a Tesla Roadster with no conversion circuitry at all.

Plug Adapters

The Plug Adapters plug into the Roadster Foundry Mobile Charger with a 4-contact twist-lock

connector that is rated for 50 amperes. (This particular connector is called a “California

Standard” connector, and is the lowest-cost 50-amp connector type with adequate quality that I

could find. I use the “marine” ones made by Marinco rather than the Hubbell version because

the Marinco connectors are sealed better, and is made of plastic rather than plated steel.)

Two of the contacts are line current for charging, one is safety (green wire) ground, and the last

is used as a “Diode Sense” line to set the maximum charging rate. For 240-volt charging, the line

current contacts connect to the red and black circuit wires. For 120-volt charging, they connect

to the black and white circuit wires. (See the schematics later on in this blog.)

Each Plug Adapter signals its ampacity with a single diode between the Diode Sense line and the

ground line. The presence and direction of this diode indicate the ampacity according to the

following table.

Each Plug Adapter, except the 120V Plug Adapter, also contains a thermal switch that shorts

this signal out when hot, to indicate a fault. The thermal switch is glued with epoxy to the inside

of the plastic plug housing.

Note that the one could build a 240-volt, 20-amp Plug Adapter that also would not have a

diode. The only difference between such a Plug Adapter and the 120V Plug Adapter would be

the type of connector on its end.

Diode

Orientation

Circuit

Ampacity

Maximum

Charging Rate

None 20A 16A

Cathode to ground 30A 24A

Anode to ground 50A 40A

Short Fault 0

The Control Pilot signal

The signaling circuit between the Charger and the car conceptually looks like this: (This is the

J1772 equivalent circuit.)

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 4/31

The value of R2 depends on the state of the car; it has one value when the car is not yet ready to

charge and another value when the car is ready to charge or is actually charging.

The sequence of operation is as follows:

1. The Charger sets its no-load output voltage to a steady +12 volts, and then measures the

voltage on the Control Pilot signal. It waits in this state until it sees the voltage on the

Control Pilot signal drop enough to indicate the presence of a car.

2. The Charger examines the Plug Adapter (checking for presence and orientation of the

diode) to determine the maximum charging rate.

3. When it detects a car, the Charger generates a continuous 1 kHz square wave with a

pulse width that indicates the maximum allowed charging rate as defined in the following

table.

4. The car measures the frequency and pulse width of the Control Pilot signal to determine if

a legitimate charger is attached, and to determine its maximum charging rate.

5. The car closes its contactors and begins charging at a rate no higher than that allowed by

the Charger.

6. During charging, the Charger monitors the temperature sensor in its Plug Adapter, and

stops generating a square wave if the Plug Adapter is too hot. (The Plug Adapter and the

receptacle will overheat if the receptacle is dirty, damaged, or worn out – not entirely

uncommon for receptacles in public locations.) In this state, the Charger blinks all its

lights quickly. It will continue to do so until the Plug Adapter cools off and the Charger is

reset (by unplugging the Charger from the receptacle, and then plugging it in again).

7. The Charger also monitors the voltage of the Control Pilot signal when it is high. If the

voltage indicates that the car is no longer present, it stops generating a square wave. In

this state, it slowly blinks the blue light, with the others off.

8. During charging, the car monitors the square wave. If it goes out of spec, the car may

indicate a charging fault, either on its touch screen or by turning the charge inlet light red,

or both.

9. During charging, the car will stop charging and indicate a fault (on its touch screen and by

turning the charge inlet red) if it detects a ground fault.

10. Note that the car may choose to charge at a rate that is below the rate signaled by the

Charger.

Control Pilot Specifications

Item Nominal Min Max Note

R1 1,000 Ω 980 Ω 1020 Ω Control Pilot source resistance

R2CONNECT 2,740 Ω 2,657 Ω 2,883 Ω Car load resistance, car present but not ready

R2READY 1,000 Ω 970 Ω 1,030 Ω Car load resistance, car ready to charge

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 5/31

VOCH +12.0 V +11.25 V +12.75 V Control Pilot high voltage, open circuit

VOCL -12.0 V -12.75 V -11.25 V Control Pilot low voltage, open circuit

VCONNECTH 9.0 V 8.25 V 9.75 V Control pilot high voltage, car present

VREADYH 6.0 V 5.25 V 6.75 V Control pilot high voltage, car ready

FOSC 1,000 Hz 995 Hz 1,005 Hz Oscillator frequency

PW12A 200 µsec 195 µsec 260 µsec Control Pilot pulse width, 12-amp charging1,2

PW16A 267 µsec 260 µsec 395 µsec Control Pilot pulse width, 16-amp charging1

PW24A 400 µsec 395 µsec 525 µsec Control Pilot pulse width, 24-amp charging1

PW32A 533 µsec 525 µsec 660 µsec Control Pilot pulse width, 32-amp charging1,2

PW40A 668 µsec 660 µsec 795 µsec Control Pilot pulse width, 40-amp charging1

Notes: 1. Pulse Width is the high-time of the Control Pulse signal, measured as the signal

crosses through 0 volts.

2. Not supported by the Mobile Charger.

The Control Pilot Generator

The printed circuit board assembly (PCBA) inside the Roadster Foundry Mobile Charger

(called the Control Pilot Generator) looks at the diode in the Plug Adapter and then signals the

car via the Control Pilot signal. It also indicates what’s up on 4 LEDs. See the Control Pilot

Generator schematic to understand this section.

The PCBA is a 2-layer board with components on both sides. All components are through-hole

type. When completed (and also before the bulky power supply was installed), both sides of the

PCBA have been sprayed with a silicone conformal coating, primarily to prevent corrosion of

the connections over time.

The Control Pilot Generator comprises the following circuits:

The power supply

The PIC microprocessor

The Control Pilot driver

The Control Pilot Sense circuit

The Diode driver

The Diode Sense circuit

The Power Supply

PS1, F1,F2, U1, C1-C3, C5

The power supply comprises a switching power supply made by Lambda, which takes anything

between 85VAC and 265VAC (at 50 Hz or 60 Hz) in and produces +12V and – 12V. It is

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 6/31

protected by a pair of fuses on its inputs. Its output feeds a 7805 linear regulator, which

produces +5V for the PIC microprocessor and the LEDs.

The high-voltage section of the PCB was laid out with safety in mind. The traces are separated

from the low-voltage section and from each other as much as possible, including skipping every

other pin on connector J1. Where possible, the high-voltage traces are beneath PS1 where they

cannot be touched. When mounted to the lid of the box, all solder contacts in the high-voltage

section are facing the lid to reduce opportunities to touch high voltage.

The PIC

U3, X1, J2, D1-D4, D7, R5-R8, R15, C4, C6, C7

The PIC microprocessor figures out what to do from its inputs, does the right thing on its

outputs, and indicates what it is doing on its LEDs. To keep the Control Pilot signal timing within

spec, the PIC’s clock is derived from a crystal.

The PIC’s EEPROM can be programmed in-circuit, using a Microchip PicKit 2 in-circuit

programming device, plugged into connector J2. The circuit comprising D7, R15, and C4 holds

the programming pin at the correct voltage, as recommended by Microchip.

The PIC indicates its state to the user via the 4 LEDs, D1-D4. (I used a variety of LED colors

because I think the different LED colors are cool, particularly the ridiculously expensive cyan

LEDs.)

As mentioned, the PIC is programmed in assembly language. This particular version of the PIC

is quite primitive, with no timers and no interrupts. Since it must produce accurate timing signals

on its outputs, the timing of the code has been accounted for in every routine, and code loops

are used to produce the timing with perfect accuracy. (I verified my code timing with the

oscilloscope.)

To minimize the opportunities for incorrect behavior due to glitches induced by electrostatic

discharge or electromagnetic interference, all inputs are filtered in software, requiring several

identical reads of each input before an input change is believed.

Read the firmware source code here. It is pretty self-explanatory for those of you with some

experience in assembly language

The Control Pilot Driver

1/2 of U2, D8, D9, R2, R9, R11, C10

This circuit drives the Control Pilot signal, as generated by the PIC, to the correct voltages and

with the correct output impedance.

The Control Pilot signal is driven with a fancy rail-to-rail op amp that compares the PIC’s signal

output voltage to a reference voltage made from 2 forward-biased diodes, causing the opamp to

swing between one rail (+12V) and the other rail (-12V). Its output drives a 1K resister and a

300 pF capacitor, to meet the J1772 output impedance spec.

The Control Pilot Sense Circuit

D5, D6, R1, R4

This circuit allows the PIC to read the voltage of the Control Pilot signal during positive swings

of the Control Pilot signal, so that the PIC can determine whether or not a car is present, and if

that car is charging or not.

The two resistors of the Control Pilot sense circuit scale the positive swing of the Control Pilot

signal such that it can be read by the PIC’s D/A converter as a voltage between 0V and +5V.

The resistor values of this divider were chosen such that the input impedance of the Control Pilot

sense circuit is quite high relative to the output impedance of the Control Pilot driver. The

Schottky diode, D6, prevents the PIC’s A/D input from going much below 0V during negative

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 7/31

swings of the Control Pilot signal. The zener diode, D 5, prevents the PIC’s A/D input from ever

going above 4.7V, particularly in the case of a failure of R1.

The Diode Driver

1/2 of U2, D8, D9, R3, R12, R13

The diode driver uses a left-over gate in the dual rail-to-rail opamp to drive the diode in the Plug

Adapter to +12V and -12V under control of the PIC.

The Diode Sense Circuit

D10-D13, C8, C9, R14, R16-R19

The PIC uses the Diode Sense circuit together with the Diode Driver to sense the presence and

orientation of a diode (or shorted thermal switch) in the Plug Adapter. The Diode Sense circuit

comprises two similar sub-circuits, each is a resistor divider, a pair of protection diodes, and a

filter capacitor.

The first sub-circuit comprises D10, D11, R14, R16, and C8. This circuit allows the PIC to

detect the presence of a diode with anode to ground – or perhaps a shorted thermal switch –

that will prevent input RC5 from swinging much above ground when the Diode Driver is driven

to +12V.

The second sub-circuit comprises D12, D13, R17-R19, and C9. This circuit allows the PIC to

detect the presence of a diode with cathode to ground – or perhaps a shorted thermal switch –

that will prevent input RC4 from swinging below 3.1V when the Diode Driver is driven to -12V.

Schematics

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 8/31

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 9/31

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 10/31

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 11/31

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 12/31

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 13/31

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 14/31

Firmware

Main Code

 title "Roadster Foundry Charger Revision 2.01"

 subtitle "Copyright (C) 2009 Martin Eberhard"

 list b=4, c=132, n=80, p=PIC16F506

;__

;| |

;| ROADSTER FOUNDRY |

;|__|

;**

;* Charger Firmware Main Code *

;* *

;* Revision Date Author Comments *

;* 1.01 2 Dec 08 M. Eberhard Created *

;* 1.02 5 Dec 08 M. Eberhard Added blinking while car connected *

;* but not ready/charging. *

;* 1.03 7 Dec 08 M. Eberhard Added firmware rev indicator *

;* 1.04 27 Jan 09 M. Eberhard Reversed LED order to match front *

;* panel labels; changed labeling from *

;* 50, 30, 15 amps to 40, 24, 16 amps *

;* 1.05 31Jan09 M. Eberhard Fix power LED while waiting for car *

;* 2.01 21May09 M. Eberhard Change from 12-amp to 16-amp *

;**

REV_MAJOR equ .2 ;note: 0 is an illegal value

REV_MINOR equ .1 ;note: 0 is an illegal value

;***

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 15/31

;* This program looks at the level if the DIODE line to the adaptor. *

;* o 40-amp charging is indicated by a diode in the adapter from the DIODE *

;* line to ground such that the DIODE line cannot go higher than 0.7V, but *

;* can go to -12V. For 40-amp charging, the 40-amp LED is turned on and a *

;* 1 kHz square wave with a 667 uSec high time is generated on the Control *

;* Pilot line to the car. *

;* o 24-amp charging is indicated by a diode in the adapter from the DIODE *

;* line to ground such that the DIODE line cannot go lower than -0.7V, but *

;* can go to +12V. For 24-amp charging, the 24-amp LED is turned on and a *

;* 1 kHz square wave with a 400 uSec high time is generated on the Control *

;* Pilot line to the car. *

;* o 16-amp charging is indicated by an open circuit in the adapter from the *

;* DIODE line to ground such that the DIODE line go to both +12V and -12V. *

;* For 16-amp charging, the 16-amp LED is turned on and a 1 kHz square *

;* wave with a 267 uSec high time is generated on the Control Pilot line *

;* to the car. *

;* o Temperature sensors in the adapters can short the DIODE line to ground *

;* such that the DIODE line cannot be driven far from ground in either *

;* polarity. When over-temperature is detected, the Power LED is flashed *

;* at 2 Hz, and the Control Pilot signal is held at +12V. *

;* *

;* This program measures the voltage on the CP line as late as possible while *

;* CP is high. Based on the voltage it measures (see below), it decides whether *

;* a car os present, and if so, whether the car is ready to charge (and is *

;* probably also charging) or not. *

;* o If no car is present, this firmware will blink the green LED slowly *

;* (about 0.5 Hz), with the other 3 LEDs off. *

;* o If a car is present but not ready, the green LED is steady-on, and the *

;* LED for the charging rate specified by the adapter blinks slowly (about *

;* o 0.5 Hz). *

;* o If the car is ready and charging, then the green LED and the LED for *

;* the charging rate specified by the adapter are both steady-on. *

;* *

;* A/D Converter Results Interpretation *

;* *

;* The A/D Converter reads a divider on the CP line such that the voltage on *

;* pin AD2 is 27/127 * Control Pulse voltage. To protect the PIC hardware, *

;* this is diode-clipped from exceeding 4.7 volts ore going below -0.3 volts. *

;* *

;* CP_VOLTAGE Interpretation while CP is driven high: *

;* *

;* CP Voltage AD2 Voltage AD2 Value Meaning *

;* 11.25V<CP<12.75V 2.39V<AD2<2.71V 122<AD2<139 No car present *

;* 10.50V 2.23V 114 This firmware's threshold *

;* 8.25V<CP<9.75V 1.75V<AD2<2.07V 89<AD2<106 Car is present *

;* 7.50V 1.59V 81 Threshold *

;* 5.25V<CP<6.75V 1.12V<AD2<1.44V 57<AD2< 74 Car is ready to charge *

;* *

;* Reads of the adapter diode and presence of a car are debounced - requiring *

;* multiple sequential reads to be the same before doing anything new. *

;* sequential reads are separated by a chunk of time. *

;* *

;* This is an absolute program - no linker is required. However, the current *

;* version ov MPLAB IDE (v8.10) does not work in assembly-only mode, so you *

;* must use "Project>Build All" (which invokes the linker) to assemble this *

;* program. *

;* *

;* Page references in the comments refer to the appropriate pages in Microchip *

;* document DS41268D, "PIC12F510/16F506 Data Sheet." *

;***

 page

;***

;* Include standard header and charger header *

;***

 #include P16F506.INC

 #include CHARGER.INC

;***

;* Reset Vector *

;***

 org RESET_VECTOR

 goto init

;***

;* Subroutines here because they must be in the first half of the page. *

;***

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 16/31

;***

;* Subroutine ReadDiode *

;* *

;* Read and debounce NEG_DIODE and POS_DIODE Subroutine *

;* *

;* On entry: DIODE is set or cleared, making one of NEG_DIODE or POS_DIODE *

;* reads meaningful. *

;* *

;* Calls: uSec *

;* *

;* On exit: W = 0 *

;* R0 trashed *

;* R1 = stable read of PORTC *

;***

ReadDiode:

 movlw HOT_COUNT_MAX + .1

 movwf HOT_COUNT

 movlw 0x0

;spin until we get HOT_COUNT_MAX identical reads of POS_DIODE and NEG_DIODE

RDLoop:

 movwf R1 ;R1 remembers what the last read found

 movlw DIODE_DELAY

 call uSec ;trashes R0

 movlw (0x1 << POS_DIODE) | (0x1 << NEG_DIODE)

 andwf PORTC,W ;read POS_DIODE test bit

 xorwf R1,F ;test for same (Z set if same)

 ;R1 trashed; W has new value

 btfsc STATUS,Z ;if this read is like the last one, dec counter

 decf HOT_COUNT,F

 btfss STATUS,Z ;quit loop if we counted down to 0

 goto RDLoop

 movwf R1

 retlw 0x0

 page

;***

;* Subroutine TestCP *

;* *

;* Read and interpret Control Pulse Subroutine *

;* *

;* On entry: Don't care *

;* *

;* Calls: None *

;* *

;* On exit: W = 0 *

;* C = 0 if a car was detected *

;* R0 = A/D Result *

;* Time: 24 cycles *

;***

TestCP:

TEST_CP_CYCLES equ .24 ;cycles consumed during this subroutine

 bsf ADCON0,GO ;(1 cycle) start the A/D conversion

 ;this loop will spin 5 times, consuming 17 cycles)

WaitADC: btfsc ADCON0,NOT_DONE ;wait for conversion to complete

 goto WaitADC

 movf ADRES,W ;(1 cycle)

 movwf R0 ;(1 cycle) save A/D result

 movlw NO_CAR ;(1 cycle) if A/D result is higher than this, then no car

 subwf R0,W ;(1 cycle)compare the A/D result to the threshold

 retlw 0x0 ;(2 cycles)

 page

;***

;* Subroutine Pulse *

;* *

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 17/31

;* Create high-pulse on CP and test for car presence Subroutine *

;* *

;* The CP signal is sampled about 39 uSec before the end of the high pulse. *

;* This gives a minimum of 200-39=141 uSec for the CP signal to overcome RC *

;* delay and reach its final value. *

;* *

;* If CAR_COUNT_MAX successive calls to this subroutine find no car present, *

;* rudely jump to init. *

;* *

;* On entry: W = low-time delay (0 means 256) *

;* R1 = high-time delay *

;* R2 = LED mask for particular charging rate *

;* R3 = Port C value *

;* CAR_COUNT has a down-count of the number of sequential times we *

;* did not see a car present *

;* CP bit (in PORTB) is high *

;* *

;* Calls: uSec *

;* TestCP *

;* *

;* On exit: W = 0 *

;* R0-R1 trashed *

;* CAR_COUNT is decremented if no car found, *

;* set to CAR_COUNT_MAX + 1 if car detected. *

;* CP bit (in PORTB) is low *

;* *

;* high time: (R1 * 4) + 28 + TEST_CP_CYCLES cycles *

;* low time: (W * 4) + 8 cycles *

;***

Pulse:

PULSE_HIGH_CYCLES equ TEST_CP_CYCLES + .28 ;count cycles while CP is high in this subroutine

PULSE_LOW_CYCLES equ .8 ;count cycles while CP is low here

 call uSec ;(W + 3 cycles low) Finish the low pulse

 bsf PORTB, CP ;(1 cycle low) Set CP high

 movf R1,W ;(1 cycle high) Get high delay

 call uSec ;(W * 4 + 3 cycles high)

;See if there is still a car around

 call TestCP ;(2+TEST_CP_CYCLES cycles high) C=0 if car there, R0=ADRES

 movlw CAR_COUNT_MAX + .1 ;(1 cycle)

 btfss STATUS,C ;(2 cycles high if taken, 1 otherwise)

 movwf CAR_COUNT ;(1 cycle high)car detected: restart count

 decf CAR_COUNT,F ;(1 cycle high)

 btfsc STATUS,Z ;(2 cycles high if taken)

 goto init ; Start over if the car disappeared

;See if the car is not actually charging and we need to blink the given LED

 movlw CAR_READY ;(1 cycle high)

 subwf R0,W ;(1 cycle) C=1 if car is charging

 btfss STATUS,C ;(2 cycles high if taken, 1 otherwise)

 goto IsCharging ;(2 cycles)

;the car is not charging: decrement the 16-bit blink counter

 decf TIMER_HIGH,W ;(1 cycle high)16-bit counter decrement

 decfsz TIMER_LOW,F ;(1 cycle high)

 movf TIMER_HIGH,W ;(1 cycle high)

 movwf TIMER_HIGH ;(1 cycle high)

;See if the 16-bit blink counter reached zero and bail of not

 iorwf TIMER_LOW,W ;(1 cycle high)Test for underflow, and restart timer if so

 btfss STATUS,Z ;(2 cycles high if taken, 1 otherwise)

 goto NoLEDChange ;(2 cycles high)

;the 16-bit blink counter went to 0, so reload the upper byte

 movlw READY_BLINK ;(1 cycle high)

 movwf TIMER_HIGH ;(1 cycle high)

 movf R2,W ;(1 cycle high)

 xorwf R3,W ;(1 cycle high)

 movwf R3 ;(1 cycle high)

 movwf PORTC ;(1 cycle high)

;set CP low and we are done

SetLowDone:

 bcf PORTB,CP ;(1 cycle high) set CP low

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 18/31

 retlw 0x0 ;(2 cycles low)

IsCharging: ;need 12 cycles

;Car is charginng: turn on the correct LED and the power LED

 movlw (0x1 << NOT_GREEN) | (0x1 << NOT_YELLOW) | (0x1 << NOT_CYAN)

 ;(1 cycle high)

 xorwf R2,W ;(1 cycle high)

 movwf PORTC ;(1 cycle high)

;stall for the correct number of cycles

 goto skip1 ;(2 cycles high)

skip1: goto skip2 ;(2 cycles high)

skip2:

NoLEDChange: ;need 5 cycles

 goto skip3 ;(2 cycles high)

skip3: nop ;(1 cycle high)

 goto SetLowDone ;(2 cycles high)

 page

;***

;* Subroutine mSec *

;* *

;* Millisecond Delay Subroutine *

;* *

;* Waste time for (W * 4000) cycles (4 mSec) *

;* *

;* On entry: W = desired delay (0 means 256) *

;* *

;* Calls: None *

;* *

;* On exit: W = 0, R0=0, R1 trashed *

;***

mSec: movwf R1

mSecLoop:

 call uSec1000

 call uSec1000

 call uSec1000

 call uSec1000

 decfsz R1,F

 goto mSecLoop

 retlw 0x0 ;(2 cycles)

;***

;* Subroutine uSec1000 *

;* *

;* 1,000 Microsecond Delay Subroutine *

;* *

;* Waste time for 1,000 cycles *

;* *

;* Calls: None (falls into uSec) *

;* *

;* On exit: W = 0, R0=0 *

;***

uSec1000:

 movlw .242 ;account for the time of the calls, etc.

; fall into uSec

;***

;* Subroutine uSec *

;* *

;* Microsecond Delay Subroutine *

;* (See page 40) With a 4 MHz crystal, 1 cycle = 1 uSec. *

;* *

;* Waste time for (W * 4) + 1 cycles *

;* *

;* On entry: W = desired delay (0 means 256) *

;* *

;* Calls: None *

;* *

;* On exit: W = 0, R0=0 *

;***

uSec:

uSecLoop: movwf R0 ;(1 cycle) the slow way to make loop 4 cycles

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 19/31

 decfsz R0,W ;(1 cycle except last time, which takes 2 cycles)

 goto uSecLoop ;(2 cycles)

 retlw 0x0 ;(2 cycles)

 page

;***

;* Initialization Routine *

;***

init:

 movlw OPTION_INIT

 option

 movlw TRISB_INIT

 tris 0x6

 movlw TRISC_INIT

 tris 0x7

 movlw CM1CON0_INIT

 movwf CM1CON0

 movlw CM2CON0_INIT

 movwf CM2CON0

 movlw VRCON_INIT

 movwf VRCON

 movlw ADCON0_INIT

 movwf ADCON0

 movlw PORTB_INIT

 movwf PORTB

 movlw PORTC_INIT

 movwf PORTC ;This turns on the green LED

 movlw FSR_INIT

 movwf FSR

 clrf STATUS ;(page 18)make sure CALLs work correctly - clear bits 7-5

;Fall into BlinkRev

;***

;* Indicate the firmware version number on the LEDs *

;* *

;* This turns on the Cyan LED, then blinks out the major revision number on *

;* the Green LED (leaving it off when done), then blinks out the minor rev *

;* number on the Yellow LED (leaving it off when done), then turns off the *

;* Cyan LED. *

;* *

;* On entry: The Blue (power) LED is on *

;* *

;* Calls: mSec (which calls uSec) *

;* *

;* On Exit: NOT_BLUE = 0 *

;* W, R0, R1, R2, CAR_COUNT trashed *

;***

BlinkRev:

 bcf PORTC,NOT_CYAN ;turn on LED to indicate rev number output

 movlw REV_BLINK ;delay to look pretty

 call mSec

 movlw REV_MAJOR ;Major revision number first

 movwf R2

MajorLoop:

 bcf PORTC,NOT_GREEN ;turn led on

 movlw REV_BLINK

 call mSec

 bsf PORTC,NOT_GREEN ;turn led off

 movlw REV_BLINK

 call mSec

 decfsz R2,F

 goto MajorLoop

 movlw REV_MINOR ;Next the minor revision number

 movwf R2

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 20/31

MinorLoop:

 bcf PORTC,NOT_YELLOW ;turn led on

 movlw REV_BLINK

 call mSec

 bsf PORTC,NOT_YELLOW ;turn led off

 movlw REV_BLINK

 call mSec

 decfsz R2,F

 goto MinorLoop

 bsf PORTC,NOT_CYAN ;All done: yellow LED off

;Fall into CarWait

 page

;***

;* Hang and blink Blue (power) LED slowly if no car is detected *

;* *

;* *

;* On entry: Don't care *

;* *

;* Calls: TestCP, uSec *

;* *

;* On Exit: NOT_BLUE = 0 (Power LED is on) *

;* W, R0, R1, R2, CAR_COUNT trashed *

;***

CarWait:

 movlw CAR_COUNT_MAX + .1

 movwf CAR_COUNT

; Loop here until we see the car present for CAR_COUNT_MAX reads in a row

; read CP twice per half-cycle of the LED.

; R2 is used to do every-other-time for half-cycle. Initial value does not matter.

CarWaitLoop:

 movlw (0x1 << NOT_BLUE) ;toggle the LED

 xorwf R2,F ;toggle relevent bit in R2

 andwf R2,W ;mask off all the other bits

 xorwf PORTC,F

 movlw WAIT_BLINK/2 ;delay for a long while

 call mSec ;trashes R0, R1

 call TestCP ;C = 0 if a car is there

 movlw CAR_COUNT_MAX + .1 ;decrement counter if car detected

 btfsc STATUS,C

 movwf CAR_COUNT ;no car: restart counter

 decfsz CAR_COUNT,F

 goto CarWaitLoop

;Fall into HotTest

 page

;***

;* Hot Test *

;* *

;* Read the diode in the adaptor, debounce it, and test for too hot. *

;* The adaptor will connect the sense wire to ground when it is hot. *

;* To test for connection to ground, DIODE must be driven high and tested with *

;* DIODE_POS, then driven low and tested with DIODE_NEG. *

;* *

;* On entry: DIODE = 1 a long time ago *

;* CP = 1 *

;* *

;* Calls: ReadDiode (which also calls uSec) *

;* uSec *

;* *

;* On Exit: DIODE = 0 *

;* POS_DIODE bit of R2 = 1 if the DIODE line was driven to +12V *

;* NEG_DIODE bit of R2 = 1 if the DIODE line was driven to -12V *

;* all other bits of R2 = 0, and R2 does not equal 0 *

;* Power LED is on, other LEDs off, R3 = value written to Port C *

;* W, R0, R1 trashed *

;***

HotTest:

 movlw PORTC_INIT

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 21/31

 movwf PORTC ;This turns on the power LED, the others off

 movwf R3

;Wait for a stable read of the diodes while DIODE is high

 call ReadDiode

 bcf PORTB,DIODE ;drive diode test line low

 movlw (0x1 << POS_DIODE) ;save the positive diode result

 andwf R1,W ;R1 has the stable read of the diode

 movwf R2 ;r2=0 means DIODE did not go high

 movlw DIODE_DELAY ;wait for DIODE line to stabilize

 call uSec ;trashes R0

 call ReadDiode

 movlw (0x1 << NEG_DIODE) ;invert and save the negative diode result

 xorwf R1,F

 andwf R1,W ;r1=0 means DIODE did not go low

 iorwf R2,F ;combine negative read with positive read

 ;r2 = 0 means DIODE line shorted to ground

 btfss STATUS,Z ;adapter is hot if DIODE line is shorted to ground

 goto TestHighRate

;fall into HotHang if adapter is hot

;***

;* Hot Hang *

;* *

;* Hang forever and fast-blink all LEDs since the adapter temp is hot *

;* On entry: NOT_BLUE = 0 *

;* NOT_CYAN = 1 *

;* NOT_YELLOW = 1 *

;* NOT_GREEN = 1 *

;* R3 = Port C value *

;* (there is no exit.) *

;***

HotHang:

 bsf PORTB,CP ;drive control pulse high permanently, just in case

HotHangLoop:

 movlw ERROR_BLINK

 call mSec ;trashes R0, R1

 movlw (0x1 << NOT_BLUE) | (0x1 << NOT_CYAN) | (0x1 << NOT_YELLOW) | (0x1 << NOT_GREEN)

 ;toggle all LEDs

 xorwf PORTC,F

 goto HotHangLoop ;loop here forever.

 page

;***

;* 40-amp charging loop *

;* *

;* Test for 40-amp charging and temperature okay. *

;* Create 1 KHz Control Pilot (CP) signal if so. *

;* High Time: nominally 667 uSec, and between 660 uSec and 795 uSec *

;* Frequency: nominally 1000 Hz, between 995 Hz and 1005 Hz *

;* 40-amp charging is indicated by a diode from the DIODE line to ground, such *

;* that the DIODE line cannot go higher than 0.7V, but can go to -12V. *

;* *

;* Hot will be indicated by NEG_DIODE becoming 1 while DIODE = 0. *

;* *

;* On entry: DIODE = 0 *

;* POS_DIODE bit of R2 = 1 if the DIODE line was driven to +12V *

;* NEG_DIODE bit of R2 = 1 if the DIODE line was driven to -12V *

;* all other bits of R2 = 0, and R2 does not equal 0 *

;* R3 = Port C value *

;* *

;* Calls: Pulse (which calls uSec and TestCP) *

;* *

;* Register usage: *

;* R0 is trashed in some subroutines *

;* R1 is a temp register, trashed regularly *

;* R2 is a mask for the Green LED in PORT C *

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 22/31

;* HOT_COUNT counts down sequential times the adapter seemed hot *

;* CAR_COUNT counts down sequential times the car seemed gone *

;* *

;* Exit conditions: Car really not present causes restart to init *

;* Adapter really hot causes rude jump to HotWait *

;* *

;* Scope Measurements: *

;* High time = 668.7 uSec *

;* Frequency = 1000 Hz (Period = 1000 uSec) *

;***

TestHighRate:

;initialize counters

 movlw HOT_COUNT_MAX + .1

 movwf HOT_COUNT

 movlw CAR_COUNT_MAX + .1

 movwf CAR_COUNT

 movlw READY_BLINK

 movwf TIMER_HIGH

;see if the adapter really is a 40-amp one

 btfsc R2,POS_DIODE ;not 40 amps if DIODE line went to +12V

 goto TestMidRate

 movlw (0x1 << NOT_GREEN) ;get ready to turn on 40-amp LED

 movw R2

;*--*

;* Count the cycles while CP is high and low in this routine *

;*--*

TEST40_LOW_CYCLES equ PULSE_LOW_CYCLES + .12

TEST40_HIGH_CYCLES equ PULSE_HIGH_CYCLES

LoopHighRate:

;*--*

;* Test NEG_DIODE (With DIODE low) to see if the adapter is hot. *

;* (High means hot.) If it really is hot (it seems hot too many times *

;* in a row), then abort rudely! *

;*--*

 movlw HOT_COUNT_MAX + .1 ;(1 cycle low)

 btfss PORTC,NEG_DIODE ;(2 cycles low if taken, 1 otherwise)

 movwf HOT_COUNT ;(1 cycle low) not hot: restart count

 decf HOT_COUNT,F ;(1 cycle)

 btfsc STATUS,Z ;(2 cycles low) Z means underflow

 goto HotTest ;double-check for too hot

;*--*

;* Finish the low pulse, set CP high, then delay for the maximum time *

;* before checking to see if the car is still there. *

;* A car is not there if two reads during two successive cycles of CP *

;* both indicate no car present. If no car is there, go init. *

;*--*

 movlw (HIGH_40AMP-TEST40_HIGH_CYCLES)/.4 ;(1 cycle low) high delay in R1

 movwf R1 ;(1 cycle low)

 movlw ((CP_PERIOD - HIGH_40AMP) - TEST40_LOW_CYCLES)/.4

 ;(1 cycle low)

 call Pulse ; high time: (R1 * 4) + PULSE_HIGH_CYCLES

 ; low time: (W * 4) + 2 + PULSE_LOW_CYCLES

 goto LoopHighRate ;(2 cycles low)

 page

;***

;* 24-amp charging loop *

;* *

;* Test for 24-amp charging and temperature okay. *

;* Create 1 KHz Control Pilot (CP) signal if so. *

;* High Time: nominally 400 uSec and between 395 uSec and 525 uSec *

;* Frequency: nominally 1000 Hz, between 995 Hz and 1005 Hz *

;* 24-amp charging is indicated by a diode from the DIODE line to ground, such *

;* that the DIODE line cannot go lower than 10.7V, but can go to +12V. *

;* *

;* Hot will be indicated by POS_DIODE becoming 0 while DIODE = 1. *

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 23/31

;* *

;* On entry: DIODE = 0 *

;* POS_DIODE bit of R2 = 1, since the DIODE line was driven to +12V *

;* NEG_DIODE bit of R2 = 1 if the DIODE line was driven to -12V *

;* all other bits of R2 = 0 *

;* R3 = Port C value *

;* *

;* Calls: Pulse (which calls uSec and TestCP) *

;* *

;* Register usage: *

;* R0 is trashed in some subroutines *

;* R1 is a temp register, trashed regularly *

;* R2 is a mask for the Yellow LED in PORT C *

;* HOT_COUNT counts down sequential times the adapter seemed hot *

;* CAR_COUNT counts down sequential times the car seemed gone *

;* *

;* Exit conditions: Car really not present causes restart to init *

;* Adapter really hot causes rude jump to HotWait *

;* *

;* Scope Measurements: *

;* High time = 399.5 uSec *

;* Frequency = 1000 Hz (Period = 1000 uSec) *

;***

TestMidRate:

 bsf PORTB,DIODE ;plan ahead to test for hot - set DIODE high

 movlw DIODE_DELAY ;wait for it to settle

 call uSec

;see if the adapter really is a 24-amp one

 btfsc R2,NEG_DIODE ;not 24 amps if DIODE line went to -12V

 goto TestLowRate

 movlw (0x1 << NOT_YELLOW) ;get ready to turn on 24-amp LED

 movwf R2

;*--*

;* Count the cycles while CP is high and low in this routine *

;*--*

TEST24_LOW_CYCLES equ PULSE_LOW_CYCLES + .12

TEST24_HIGH_CYCLES equ PULSE_HIGH_CYCLES

LoopMidRate:

;*--*

;* Test POS_DIODE (With DIODE high) to see if the adapter is hot. *

;* (Low means hot.) If it really is hot (it seems hot too many times in *

;* a row), then abort rudely! *

;*--*

 movlw HOT_COUNT_MAX + .1 ;(1 cycle low)

 btfsc PORTC,POS_DIODE ;(2 cycles low if taken, 1 otherwise)

 movwf HOT_COUNT ;(1 cycle low) not hot: restart count

 decf HOT_COUNT,F ;(1 cycle low)

 btfsc STATUS,Z ;(2 cycles low) Z means underflow

 goto HotTest ;double-check for too hot

;*--*

;* Finish the low pulse, set CP high, then delay for the maximum time *

;* before checking to see if the car is still there. *

;* A car is not there if two reads during two successive cycles of CP *

;* both indicate no car present. If no car is there, go init. *

;*--*

 movlw (HIGH_24AMP-TEST24_HIGH_CYCLES)/.4 ;(1 cycle low) put high delay in R1

 movwf R1 ;(1 cycle low)

 movlw ((CP_PERIOD - HIGH_24AMP) - TEST24_LOW_CYCLES)/.4

 ;(1 cycle low)

 call Pulse ; high time: (R1 * 4) + PULSE_HIGH_CYCLES

 ; low time: (W * 4) + 2 + PULSE_LOW_CYCLES

 goto LoopMidRate ;(2 cycles low)

 page

;***

;* 16-amp charging loop *

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 24/31

;* *

;* Must be 16-amp charging. Test for temperature okay. *

;* Create 1 KHz Control Pilot (CP) signal if so. *

;* High Time: nominally 267 uSec and between 260 uSec and 395 uSec *

;* Frequency: nominally 1000 Hz, between 995 Hz and 1005 Hz *

;* 16-amp charging is indicated by nothing connected to the DIODE line, such *

;* that the DIODE line can go to -12V, and also can go to +12V. *

;* *

;* Hot will be indicated by POS_DIODE becoming 0 while DIODE = 1. *

;* *

;* On entry: DIODE = 1 *

;* POS_DIODE bit of R2 = 1, since the DIODE line was driven to +12V *

;* NEG_DIODE bit of R2 = 1, since the DIODE line was driven to -12V *

;* all other bits of R2 = 0 *

;* R3 = Port C value *

;* *

;* Calls: Pulse (which calls uSec and TestCP) *

;* *

;* Register usage: *

;* R0 is trashed in some subroutines *

;* R1 is a temp register, trashed regularly *

;* R2 is a mask for the Cyan LED in PORT C *

;* HOT_COUNT counts down sequential times the adapter seemed hot *

;* CAR_COUNT counts down sequential times the car seemed gone *

;* *

;* Exit conditions: Car really not present causes restart to init *

;* Adapter really hot causes rude jump to HotWait *

;* *

;* Scope Measurements: *

;* High time = ??? uSec *

;* Frequency = 1000 Hz (Period = 1000 uSec) *

;***

TestLowRate:

 movlw (0x1 << NOT_CYAN) ;get ready to turn on 16-amp LED

 movwf R2

;*--*

;* Count the cycles while CP is high and low in this routine *

;*--*

TEST16_LOW_CYCLES equ PULSE_LOW_CYCLES + .12

TEST16_HIGH_CYCLES equ PULSE_HIGH_CYCLES

LoopLowRate:

;*--*

;* Test POS_DIODE (With DIODE high) to see if the adapter is hot. *

;* (Low means hot.) If it really is hot (it seems hot too many times in *

;* a row), then abort rudely! *

;*--*

 movlw HOT_COUNT_MAX + .1 ;(1 cycle low)

 btfsc PORTC,POS_DIODE ;(2 cycles low if taken, 1 otherwise)

 movwf HOT_COUNT ;(1 cycle low) not hot: restart count

 decf HOT_COUNT,F ;(1 cycle)

 btfsc STATUS,Z ;(2 cycles low) Z means underflow

 goto HotTest ;double-check for too hot

;*--*

;* Finish the low pulse, set CP high, then delay for the maximum time *

;* before checking to see if the car is still there. *

;* A car is not there if two reads during two successive cycles of CP *

;* both indicate no car present. If no car is there, go init. *

;*--*

 movlw (HIGH_16AMP - TEST16_HIGH_CYCLES)/.4 ;(1 cycle low) put high delay in R1

 movwf R1 ;(1 cycle low)

 movlw ((CP_PERIOD - HIGH_16AMP) - TEST16_LOW_CYCLES)/.4

 ;(1 cycle low)

 call Pulse ; high time: (R1 * 4) + PULSE_HIGH_CYCLES

 ; low time: (W * 4) + 2 + PULSE_LOW_CYCLES

 goto LoopLowRate ;(2 cycles low)

 end

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 25/31

 Charger Header File

;__

;| |

;| ROADSTER FOUNDRY |

;|__|

;***+***************************

;* Charger Firmware Header File *

;* *

;* o Tell the assembler to set up the configuration register when the chip is *

;* programmed: External oscillator, Master Clear disabled, no code *

;* protection, no watchdog *

;* o Name the I/O pins. Note that pin CP_VOLTAGE is defined as an ADC input. *

;* o Define inital values for all the PIC registers *

;* o Define a bunch of useful constants *

;* o Name a few RAM locations that are used as registers and counters *

;* *

;* Page references in the comments refer to the appropriate pages in Microchip *

;* document DS41268D, "PIC12F510/16F506 Data Sheet." *

;***

 __config _XT_OSC & _MCLRE_OFF & _CP_OFF & _WDT_OFF

;*--*

;* I/O pin definitions *

;*--*

CP equ RB0 ;output to control pulse signal to car

DIODE equ RB1 ;output to drive +/-12V into programming diode

CP_VOLTAGE equ RB2 ;(AN2) positive voltage measurement for Control Pulse

Vpp equ RB3 ;RB3 is only used during PIC programming

OSC2 equ RB4 ;RB4 is used for the external xtal

OSC1 equ RB5 ;RB5 is used for the external xtal

NOT_BLUE equ RC0 ;active low output to LED

NOT_CYAN equ RC1 ;active low output to LED

NOT_YELLOW equ RC2 ;active low output to LED

NOT_GREEN equ RC3 ;active low output to LED

NEG_DIODE equ RC4 ;negative-sense for programming diode

POS_DIODE equ RC5 ;positive-sense for programming diode

;*--*

;* System equates *

;*--*

RESET_VECTOR equ 0x0 ;defined by PIC hardware

;*--*

;* PIC register initial values *

;*--*

OPTION_INIT equ (1 << NOT_RBWU) | (1 << NOT_RBPU) | PSA | (1 << PS0) | (1 << PS1) | (1 << PS2)

 ;(page 22)

 ;Disable wakeup on pin,

 ;Disable weak pullups,

 ;Timer0 source = instruction cycle clock

 ;T0SE = don't care

 ;Prescaler assigned to WDT (Watchdog timer)

 ;Prescaler = 1:128

TRISB_INIT equ 0xFC ;(page 34)RB0 & RB1 are outputs, the rest of RB are inputs

TRISC_INIT equ 0xF0 ;(page 34)RC0-RC3 are outputs, the rest of RC are inputs

CM1CON0_INIT equ (0x1 << NOT_C1OUTEN) | (0x1 << NOT_C1WU)

 ;(page 44) Disable comparator 1

CM2CON0_INIT equ (0x1 << NOT_C2OUTEN) | (0x1 << NOT_C2WU)

 ;(page 45) Disable comparator 2

VRCON_INIT equ 0x0 ;Voltage reference off

FSR_INIT equ 0x0 ;page 0

ADCON0_INIT equ (0x1 << ANS0) | (0x1 << ADCS1) | (0x1 << CHS1) | (0x1 << ADON)

 ;(page 51-53) enable ADC with AN2 as input, clock = Fosc/4

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 26/31

PORTB_INIT equ (0x1 << CP) | (0x1 << DIODE)

 ;both outputs high

PORTC_INIT equ (0x1 << NOT_GREEN) | (0x1 << NOT_YELLOW) | (0x1 << NOT_CYAN)

 ;only power LED on

 page

;*--*

;* RAM usage *

;*--*

;general purpose registers, visible in every page

R0 equ 0x0d

R1 equ 0x0e

R2 equ 0x0f

;general purpose registers that change with FSR. (We don't change FSR, however.)

CAR_COUNT equ 0x10 ;counts sequential occurrences of no car detected

HOT_COUNT equ 0x11 ;counts sequential occurrences of hot adapter detected

TIMER_LOW equ 0x12 ;used to time blinking while producing CP

TIMER_HIGH equ 0x13

R3 equ 0x14

;*--*

;* Useful constants *

;*--*

NO_CAR equ .114 ;if ADC read is higher than this, then no car is detected

CAR_READY equ .81 ;if ADC read is lower than this, then the car is charging

CAR_COUNT_MAX equ .4 ;car is gone if it seems gone this many cycles in a row

HOT_COUNT_MAX equ .4 ;adapter is hot if it seems hot this many cycles in a row.

DIODE_DELAY equ .250 ;delay after changing DIODE before reading NEG_DIODE

 ;or POS_DIODE, units = 4 uSec

WAIT_BLINK equ .250 ;(units are 4 mSec) blink rate while no car

ERROR_BLINK equ .63 ;(units are 4 mSec) blink rate when error

READY_BLINK equ .4 ;(units are 256 mSec) blink rate while car present but not ready

REV_BLINK equ .125 ;(units are 4 mSec) blink rate for displaying firmware revision

;These are the timing specifications for the CP signal (these work best when divisibly by 4.)

CP_PERIOD equ .1000 ;period in uSec for CP signal

HIGH_40AMP equ .668 ;high time in uSec for 40-amp CP

HIGH_24AMP equ .400 ;high time in uSec for 24-amp CP

HIGH_16AMP equ .268 ;high time in uSec for 16-amp CP

 page

Standard Header File

LIST

; P16F506.INC Standard Header File, Version 1.10 Microchip Technology, Inc.

 NOLIST

; This header file defines configurations, registers, and other useful bits of

; information for the PIC16F506 microcontroller. These names are taken to match

; the data sheets as closely as possible.

; Note that the processor must be selected before this file is

; included. The processor may be selected the following ways:

; 1. Command line switch:

; C:\ MPASM MYFILE.ASM /P16F506

; 2. LIST directive in the source file

; LIST P=16F506

; 3. Processor Type entry in the MPASM full-screen interface

;==

;

; Revision History

;

;==

;Rev: Date: Reason:

;1.00 12/13/04 Initial Release

;1.01 13/15/04 Added EC osc mode, COrrected CP on

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 27/31

;1.02 07/14/05 Updated Comparator names, comparator register bit names, and Oscillator fuse options

;1.03 08/26/05 Added port bit names

;==

;

; Verify Processor

;

;==

 IFNDEF __16F506

 MESSG "Processor-header file mismatch. Verify selected processor."

 ENDIF

;==

;

; Register Definitions

;

;==

W EQU H'0000'

F EQU H'0001'

;----- Register Files ---

INDF EQU H'0000'

TMR0 EQU H'0001'

PCL EQU H'0002'

STATUS EQU H'0003'

FSR EQU H'0004'

OSCCAL EQU H'0005'

PORTB EQU H'0006'

PORTC EQU H'0007'

CM1CON0 EQU H'0008'

ADCON0 EQU H'0009'

ADRES EQU H'000A'

CM2CON0 EQU H'000B'

VRCON EQU H'000C'

;----- STATUS Bits --

RBWUF EQU H'0007'

CWUF EQU H'0006'

PA0 EQU H'0005'

NOT_TO EQU H'0004'

NOT_PD EQU H'0003'

Z EQU H'0002'

DC EQU H'0001'

C EQU H'0000'

;----- OPTION Bits --

NOT_RBWU EQU H'0007'

NOT_RBPU EQU H'0006'

T0CS EQU H'0005'

T0SE EQU H'0004'

PSA EQU H'0003'

PS2 EQU H'0002'

PS1 EQU H'0001'

PS0 EQU H'0000'

;----- OSCCAL Bits --

CAL6 EQU H'0007'

CAL5 EQU H'0006'

CAL4 EQU H'0005'

CAL3 EQU H'0004'

CAL2 EQU H'0003'

CAL1 EQU H'0002'

CAL0 EQU H'0001'

;----- CM1CON0 Bits --

C1OUT EQU H'0007'

NOT_C1OUTEN EQU H'0006'

C1POL EQU H'0005'

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 28/31

NOT_C1T0CS EQU H'0004'

C1ON EQU H'0003'

C1NREF EQU H'0002'

C1PREF EQU H'0001'

NOT_C1WU EQU H'0000'

;----- ADCON0 Bits --

ANS1 EQU H'0007'

ANS0 EQU H'0006'

ADCS1 EQU H'0005'

ADCS0 EQU H'0004'

CHS1 EQU H'0003'

CHS0 EQU H'0002'

GO EQU H'0001'

NOT_DONE EQU H'0001'

ADON EQU H'0000'

;----- CM2CON0 Bits --

C2OUT EQU H'0007'

NOT_C2OUTEN EQU H'0006'

C2POL EQU H'0005'

C2PREF2 EQU H'0004'

C2ON EQU H'0003'

C2NREF EQU H'0002'

C2PREF1 EQU H'0001'

NOT_C2WU EQU H'0000'

;----- VRCON Bits --

VREN EQU H'0007'

VROE EQU H'0006'

VRR EQU H'0005'

VR3 EQU H'0003'

VR2 EQU H'0002'

VR1 EQU H'0001'

VR0 EQU H'0000'

;----- PORTB Bits --

RB0 EQU H'0000'

RB1 EQU H'0001'

RB2 EQU H'0002'

RB3 EQU H'0003'

RB4 EQU H'0004'

RB5 EQU H'0005'

;----- PORTC Bits --

RC0 EQU H'0000'

RC1 EQU H'0001'

RC2 EQU H'0002'

RC3 EQU H'0003'

RC4 EQU H'0004'

RC5 EQU H'0005'

;==

;

; RAM Definition

;

;==

 __MAXRAM H'7F'

;==

;

; Configuration Bits

;

;==

_IOSCFS_ON EQU H'0FFF'

_IOSCFS_OFF EQU H'0FBF'

_MCLRE_ON EQU H'0FFF'

_MCLRE_OFF EQU H'0FDF'

_CP_ON EQU H'0FEF'

_CP_OFF EQU H'0FFF'

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 29/31

_WDT_ON EQU H'0FFF'

_WDT_OFF EQU H'0FF7'

_LP_OSC EQU H'0FF8'

_XT_OSC EQU H'0FF9'

_HS_OSC EQU H'0FFA'

_EC_OSC EQU H'0FFB'

_IntRC_OSC_RB4EN EQU H'0FFC'

_IntRC_OSC_CLKOUTEN EQU H'0FFD'

_ExtRC_OSC_RB4EN EQU H'0FFE'

_ExtRC_OSC_CLKOUTEN EQU H'0FFF'

 LIST

Leave a Comment

,o Comments Yet »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a comment

 Name (required)

 Mail (will not be published) (required)

 Website

Submit Comment

gfedc Notify me of follow-up comments via email.

Recent Comments

David Kosowsky on The Future Starts Now.

Gabe on The Future Starts Now.

Rob D. on The Future Starts Now.

Steve S. on The Future Starts Now.

Gabe on The Future Starts Now.

Pages

About

Downloads

a

6Select Category

Blogroll

Tesla fan club

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 30/31

The Oil Drum

WordPress.com

Blog Stats

421,655 hits

Blog at WordPress.com.

19/08/2009 The Roadster Foundry Mobile Ch…

…wordpress.com/…/the-roadster… 31/31

